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Open Problems for Sequential Effect Algebras

Stan Gudder1

A sequential effect algebra (SEA) is an effect algebra on which a sequential product
with certain natural properties is defined. In such structures, we can study combinations
of simple measurements that are series as well as parallel. This article presents some
open problems for SEAs together with background material, comments and partial
results. Two examples of open problems are the following: is A ◦ B = A1/2BA1/2 the
only sequential product on a Hilbert space SEA? It is known that the sharp elements of
a SEA form an orthomodular poset. Is every orthomodular poset isomorphic to the set
of sharp elements for some SEA?

KEY WORDS: effect algebras; sequential effect algebras; positive operators; quantum
effects.
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1. INTRODUCTION

It has been said that a mathematical theory is mature if it contains at least
50 important theorems. Using this criterion, we can surely say that each of the
main mathematical disciplines, algebra, geometry, topology and analysis are ma-
ture. Even the subdisciplines, algebraic geometry, algebraic topology, differential
geometry, number theory, operator theory, group theory and measure theory are
mature. We shall now supplement this criterion by saying that a mathematical
theory is dynamic if it contains at least 50 important unsolved problems. It is
possible that some of the mature mathematical theories are no longer dynamic,
although this can probably only be decided by a researcher who works in this
particular field. In many ways, unsolved problems are more interesting, exciting
and stimulating than established results.

This article discusses some unsolved open problems for sequential effect
algebras (SEAs). The theory of effect algebras and SEAs is too new to be mature.
However, we believe that it is entering a dynamic phase. We certainly do not intend
to introduce 50 open problems. However, we shall present 25 that we consider
interesting and important. We also believe that effect algebra researchers can
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provide many more. In order to understand these problems we shall first review
some of the definitions and basic results for SEAs. We shall also discuss physical
motivation and partial results.

2. BASIC DEFINITIONS AND RESULTS

Physically, an effect represents a two-valued measurement that may be fuzzy
(or unsharp). An effect algebra is a collection of effects on which a parallel or
statistical combination of certain elements is defined. To be precise, an effect
algebra is a system (E, 0, 1,⊕) where 0 and 1 are distinct elements of E and ⊕
is a partial binary operation on E satisfying:

(EA1) If a ⊕ b is defined, then b ⊕ a is defined and b ⊕ a = a ⊕ b.
(EA2) If a ⊕ (b ⊕ c) is defined, then (a ⊕ b) ⊕ c is defined and (a ⊕ b) ⊕ c =

a ⊕ (b ⊕ c).
(EA3) For every a ∈ E, there exists a unique a′ ∈ E such that a ⊕ a′ = 1.
(EA4) If a ⊕ 1 is defined, then a = 0.

If a ⊕ b is defined, we write a ⊥ b. We define a ≤ b if there is a c ∈ E

such that a ⊕ c = b. It can be shown that (E,≤, ′) is a bounded involu-
tion poset. That is, 0 ≤ a ≤ 1 for all a ∈ E, a′′ = a and a ≤ b implies that
b′ ≤ a′. It can also be shown that a ⊥ b if and only if a ≤ b′. An element
a ∈ E is sharp if a ∧ a′ = 0. For further motivation and results on effect al-
gebras, we refer the reader to Bennett and Foulis (1977), Dvurečenskij and
Pulmannová (2000), Foulis and Bennett (1994), Giuntini and Greuling (1989) and
Gudder (1998).

In order to describe series combinations of effects, we introduce a sequential
product (Gudder; Gudder and Greechie, 2002; Gudder and Greechie; Gudder
and Nagy, 2001) on an effect algebra. For a binary operation ◦, if a ◦ b = b ◦ a

we write a | b. A sequential effect algebra (SEA) is a system (E, 0, 1,⊕, ◦)
where (E, 0, 1,⊕) is an effect algebra and ◦: E × E → E is a binary operation
satisfying:

(SEA1) The map b 
→ a ◦ b is additive for every a ∈ E (that is, if b ⊥ c, then
a ◦ b ⊥ a ◦ c and a ◦ (b ⊕ c) = a ◦ b ⊕ a ◦ c).

(SEA2) 1 ◦ a = a for every a ∈ E.
(SEA3) If a ◦ b = 0, then a | b.
(SEA4) If a | b, then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c for every c ∈ E.
(SEA5) If c | a and c | b, then c | a ◦ b and c | (a ⊕ b) whenever a ⊥ b.

We call an operation satisfying (SEA1)–(SEA5) a sequential product on E. If a | b

for every a, b ∈ E, then E is a commutative SEA. Notice that if ◦ is a commutative
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binary operation on an effect algebra E, to test whether ◦ is a sequential product
we need only show (SEA1), (SEA2) and

(SEA4′) a ◦ (b ◦ c) = (a ◦ b) ◦ c for every a, b, c ∈ E.

We now briefly describe the most important examples of SEAs.

Example 1. For a Boolean algebra B, define a ⊥ b if a ∧ b = 0 and in this case
a ⊕ b = a ∨ b. Then (B, 0, 1,⊕) is an effect algebra and all its elements are sharp.
Under the unique sequential product a ◦ b = a ∧ b, B becomes a SEA (Gudder
and Greechie, 2002).

Example 2. For [0, 1] ⊆ R define a ⊥ b if a + b ≤ 1 and in this case a ⊕ b =
a + b. Then ([0, 1], 0, 1,⊕) is an effect algebra whose only sharp elements are 0, 1.
Under the unique sequential product a ◦ b = ab, [0, 1] becomes a SEA (Gudder
and Greechie, to appear).

Example 3. Let X 
= ∅ and let F ⊆ [0, 1]X. We call F a fuzzy set system on
X if the functions 0, 1 ∈ F , 1 − f ∈ F whenever f ∈ F , f + g ∈ F whenever
f, g ∈ F with f + g ≤ 1 and fg ∈ F whenever f, g ∈ F . Then (F , 0, 1,⊕) is
an effect algebra with f ⊕ g = f + g for f + g ≤ 1. The sharp elements of F
are the characteristic functions. If F = [0, 1]X, we call F a full fuzzy set system.
Under the sequential product f ◦ g = fg, F becomes a SEA. If F is full, this
sequential product is unique (Gudder and Greechie, to appear).

The previous examples were commutative SEAs while the next example is
noncommutative.

Example 4. Let H be a Hilbert space and let E(H ) be the set of self-adjoint
operators on H satisfying 0 ≤ A ≤ I . For A,B ∈ E(H ), we define A ⊥ B if
A + B ∈ E(H ) and in this case A ⊕ B = A + B. Then (E(H ), 0, I,⊕) is an effect
algebra. The sharp elements of E(H ) consist of the set of projection operators
P(H ) on H . Under the sequential product A ◦ B = A1/2BA1/2, E(H ) becomes a
SEA. Unlike the previous examples, it is not obvious that ◦ is indeed a sequential
product. It is easy to show that (SEA1)–(SEA3) hold but verifying (SEA4) and
(SEA5) are more difficult. For example, if A | B it is not obvious that A | B ′. This
would say that A1/2BA1/2 = B1/2AB1/2 implies that

A1/2(I − B)A1/2 = (I − B)1/2A(I − B)1/2 (2.0)

The second part of (SEA4) would say that A1/2BA1/2 = B1/2AB1/2 implies that

A1/2B1/2CB1/2A1/2 = (A1/2BA1/2)1/2C(A1/2BA1/2)1/2 (2.1)
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for every C ∈ E(H ). However, applying Theorem 2.1 (Gudder and Nagy, 2001)
which states that A1/2BA1/2 = B1/2AB1/2 if and only if AB = BA, (SEA4) and
(SEA5) easily follow.

3. OPEN PROBLEMS

We now state 25 open problems for SEAs. Some of these problems will be
accompanied with comments and background material.

Problem 1. We have seen in Example 3 that f ◦ g = fg is a sequential product
on a fuzzy set system F and it is unique if F is full. Is this the only sequential
product for arbitrary F ?

Problem 2. Is A ◦ B = A1/2BA1/2 the only sequential product on E(H )?

A SEA E is a σ -SEA if for any increasing sequence a1 ≤ a2 ≤ · · · in E, the
least upper bound ∨ai exists in E. We denote the set of sharp elements in a SEA
E by ES . A SEA E is sharply dominating if for every a ∈ E there exists a least
element â ∈ ES such that a ≤ â (Gudder, 1998).

Problem 3. It can be shown that every σ -SEA is sharply dominating (Gudder
and Greechie, 2002). Is every SEA sharply dominating?

Problem 4. If E is a SEA, then it can be shown that ES is an orthomodular poset
(Gudder and Greechie, 2002). Is every orthomodular poset isomorphic to ES for
some SEA E?

Problem 5. If E is a sharply dominating SEA, then it can be shown that ES is
an orthomodular lattice. Is every orthomodular lattice isomorphic to ES for some
sharply dominating SEA E?

Problem 6. In a SEA, does a = b ◦ a ⊕ b′ ◦ a imply that a | b ? (This result
holds in E(H ) (Gudder and Nagy, 2001).)

Problem 7. In a SEA are the following statements equivalent? (i) a ◦ b = b,
(ii) b ◦ a = b, (iii) a ◦ b = b ◦ a = b ? (This result holds in E(H ) (Gudder and
Nagy, 2001).)

Problem 8. For a SEA E does a ◦ (b ◦ c) = (a ◦ b) ◦ c for every c ∈ E imply
that a | b ? (This result holds in E(H ) (Gudder and Nagy, 2001).)
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Problem 9. An effect a is almost sharp if a = p ◦ q for some sharp elements p

and q. Characterize the almost sharp elements of a SEA. (This has been done for
E(H ).)

Problem 10. If a is almost sharp is an = a ◦ · · · ◦ a (n terms) almost sharp?
(This result holds in E(H ).)

Problem 11. Characterize effects of the form

a = p1 ◦ · · · (pn−2 ◦ (pn−1 ◦ pn))

where the pi , i = 1, . . . , n, are sharp. (This has been done for E(H ).)

Let E and F be SEAs. A morphism from E to F is an additive map φ: E → F

such that φ(1) = 1 and φ(a ◦ b) = φ(a) ◦ φ(b) for all a, b ∈ E. A morphism
φ: E → [0, 1] is called a multiplicative state. We say that E and F are isomorphic
if there exists a bijective morphism φ: E → F such that φ−1 is a morphism. A
solution to the next result would be important for the foundations of quantum
mechanics.

Problem 12. Characterize the SEAs that are isomorphic to E(H ).

A set of multiplicative states � on E is order-determining if ω(a) ≤ ω(b) for
all ω ∈ � implies that a ≤ b.

Problem 13. Give an algebraic characterization of SEAs that are isomorphic
to a fuzzy set system. (A necessary but not sufficient condition is commutativity.
Necessary and sufficient conditions are commutativity and an order determining
set of multiplicative states (Gudder and Greechie, 2002).)

Problem 14. Give an algebraic characterization of SEAs that are isomorphic to
a full fuzzy set system.

For many algebraic structures, the concept of an ideal is very important. Ideals
are frequently kernels of morphisms and are useful for constructing representations
of the structures. The next problem, which is admittedly rather vague, asks whether
such a concept may be applied for SEAs.

Problem 15. Is there a useful definition of an ideal in a SEA?

Let E,F,G be SEAs. A SEA bimorphism β: E × F → G satisfies:

(i) β(1, 1) = 1,
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(ii) β(a, ·) is additive for every a ∈ E,

(iii) β(·, b) is additive for every b ∈ F ,

(iv) β(a ◦ b, c ◦ d) = β(a, c) ◦ β(b, d) for every a, b ∈ E, c, d ∈ F .

A SEA tensor product of E and F is a pair (T , τ ) where T is a SEA and τ : E ×
F → T is a SEA bimorphism such that

(1) Every element of T has the form τ (a1, b1) ⊕ · · · ⊕ τ (an, bn).
(2) If β: E × F → G is a SEA bimorphism, there exists a morphism φ: T →

G such that β = φ ◦ τ .

Theorem 1. If E and F are commutative SEAs, then the SEA tensor product of
E and F exists if and only if there exists a SEA bimorphism on E × F (Gudder,
to appear).

Problem 16. Does Theorem 1 hold for an arbitrary SEA?

Let A be a subset of a SEA E. We say that A is commutative if a | b for all
a, b ∈ A. We say that A is a sub-SEA of E if A is a sub-effect algebra of E and
a ◦ b ∈ A whenever a, b ∈ A. The SEA A generated by A is the smallest sub-SEA
of E that contains A. Of course, A is a sub-SEA of E if and only if A = A. The
commutant of A is defined by

C(A) = {b ∈ E: b | a for all a ∈ A}
It is clear that C(A) is a sub-SEA of E and that A ⊆ C [C(A)].

Problem 17. If A is commutative, is A commutative?

Problem 18. If A is commutative, is C [C(A)] commutative?

Problem 19. Characterize the SEAs E such that A = C [C(A)] for all A ⊆ E.

We say that b is a square root of a if b2 = a.

Problem 20. If a square root of a exists, is it unique?

Problem 21. Characterize the SEAs E such that a square root of a exists for all
a ∈ E.

Problem 22. If a ⊥ b, is it the case that a ◦ b ⊥ a ◦ b ?

Problem 23. If a ⊥ b and a ◦ b ⊥ a ◦ b, is it the case that 2a ◦ b ≤ a2 ⊕ b2?
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The next problem already appeared in Gudder and Nagy (2001) but it prob-
ably deserves repeating. Physically, the sequential product a ◦ b corresponds to
a measurement in which a is performed first and b is performed second. In a
noncommutative SEA, ◦ need not be associative so that a ◦ (b ◦ c) 
= (a ◦ b) ◦ c

in general. For example, in E(H ), Eq. (2.1) does not necessarily hold. But this
states that performing a first and then performing b ◦ c does not coincide with
performing a ◦ b first and then performing c.

Problem 24. Is there an actual experiment which verifies that a ◦ (b ◦ c) 
=
(a ◦ b) ◦ c ?

Our last problem is related to Problem 6. A map L: E(H ) → E(H ) of the
form L(B) = �n

i=1Ai ◦ B, where Ai ∈ E(H ), i = 1, . . . , n, satisfy �Ai = I is
called a generalized Lüders map (Gudder and Nagy, 2001). We say that B is an
L-fixed point if L(B) = B. Fixed points are important in quantum measurement
and quantum information theory. It can be shown that for n = 2, L(B) = B if and
only if B | Ai , i = 1, 2. Moreover, if dim H < ∞ then for any n, L(B) = B if and
only if B | Ai , i = 1, . . . , n. However, if dim H = ∞ then this last result does not
hold. The proof of this is nonconstructive and requires that n≥5. This suggests the
following problem.

Problem 25. Give a concrete example of a generalized Lüders map with n = 3
such that L(B) = B does not imply that B | Ai , i = 1, 2, 3.
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